Ultrasonic Thickness Gauges

Showing 1-12 of 13

Page
Set Descending Direction

Showing 1-12 of 13

Page
Set Descending Direction

Ultrasonic Thickness Gauges aka (NDT) Non-Destructive Testing Equipment

Ultrasonic Measurement Information

In order for the transducer to do its job, there must be no air gaps between the wear-face and the surface of the material being measured. This is accomplished with the use of a "coupling" fluid, commonly called "couplant". This fluid serves to "couple", or transmit, the ultrasonic sound waves from the transducer, into the material, and back again. Before attempting to make a measurement, a small amount of couplant should be applied to the surface of the material being measured. Typically, a single droplet of couplant is sufficient.

In any ultrasonic measurement scenario, the shape and roughness of the test surface are of paramount importance. Rough, uneven surfaces may limit the penetration of ultrasound through the material, and result in unstable, and therefore unreliable, measurements. The surface being measured should be clean, and free of any small particulate matter, rust, or scale. The presence of such obstructions will prevent the transducer from seating properly against the surface. Often, a wire brush or scraper will behelpful in  cleaning surfaces. In more extreme cases, rotary sanders or grinding wheels may be used, though care must be taken to prevent surface gouging, which will inhibit proper transducer coupling. Extremely rough surfaces, such as the pebble-like finish of some cast irons, will prove most difficult to measure. These kinds of surfaces act on the sound beam like frosted glass on light, the beam becomes diffused and scattered in all directions. In addition to posing obstacles to measurement, rough surfaces contribute to excessive wear of the transducer, particularly in situations where the transducer is "scrubbed" along the surface. Transducers should be inspected on a regular basis, for signs of uneven wear of the wearface. If the wearface is worn on one side more than another, the sound beam penetrating the test material may no longer be perpendicular to the material surface. In this case, it will be difficult to exactly locate tiny irregularities in the material being measured, as the focus of the soundbeam no longer lies directly beneath the transducer.

Several factors affect the strength of ultrasound as it travels. These are outlined below:

Initial Signal Strength
The stronger a signal is to begin with, the stronger its return echo will be. Initial signal strength is largely a factor of the size of the ultrasound emitter in the transducer. A large emitting area will send more energy into the material being measured than a small emitting area. Thus, a so-called "1/2-inch" transducer will emit a stronger signal than a "1/4-inch" transducer.

Absorption and Scattering
As ultrasound travels through any material, it is partly absorbed. If the material through which it travels has any grain structure, the sound waves will also experience scattering. Both of these effects reduce the strength of the waves, and thus, the ability to detect the returning echo. Higher frequency ultrasound is absorbed and scattered more than ultrasound of a lower frequency. While it may seem that using a lower
frequency transducer might be better in every instance, low frequencies are less directional than high frequencies. Thus, a higher frequency transducer would be a better choice for detecting the exact location of
small pits or flaws in the material being measured.

Geometry of the Transducer
The physical constraints of the measuring environment sometimes determine a transducer's suitability for a given job. Some transducers may simply be too large to be used in tightly confined areas. Also, the surface area available for contacting with the transducer may be limited, requiring the use of a transducer with a small wearface. Measuring on a curved surface, such as an engine cylinder wall, may require the use of a transducer with a matching curved wearface.

Temperature of the Material
When it is necessary to measure on surfaces that are exceedingly hot, high temperature transducers must be used. These transducers are built using special materials and techniques that allow them to withstand high temperatures without damage. Additionally, care must be taken when performing a "Probe-Zero" or "Calibration to Known Thickness" with a high temperature transducer.